2015
DOI: 10.1016/j.landurbplan.2015.02.020
|View full text |Cite
|
Sign up to set email alerts
|

Social media and the city: Rethinking urban socio-spatial inequality using user-generated geographic information

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
197
0
17

Year Published

2016
2016
2024
2024

Publication Types

Select...
5
3
1

Relationship

0
9

Authors

Journals

citations
Cited by 302 publications
(214 citation statements)
references
References 60 publications
0
197
0
17
Order By: Relevance
“…Twitter's daily use profiles serve to classify the space according to the type of dominant activity, whether business, leisure/weekend, nightlife and residential (Frias-Martinez et al, 2012). Geolocated tweets have also been used to analyse the degree of social mixing in the use of space by tracking the movement of social groups in highly segregated cities such as Río de Janeiro (Netto et al, 2005) and Louisville (Shelton et al, 2015). Unlike the information supplied by official sources, which offer data relating to place of residence, these studies apply indicators of multiculturalness and mixing to examine the use of space throughout the day.…”
Section: Being Connected: Twittermentioning
confidence: 99%
“…Twitter's daily use profiles serve to classify the space according to the type of dominant activity, whether business, leisure/weekend, nightlife and residential (Frias-Martinez et al, 2012). Geolocated tweets have also been used to analyse the degree of social mixing in the use of space by tracking the movement of social groups in highly segregated cities such as Río de Janeiro (Netto et al, 2005) and Louisville (Shelton et al, 2015). Unlike the information supplied by official sources, which offer data relating to place of residence, these studies apply indicators of multiculturalness and mixing to examine the use of space throughout the day.…”
Section: Being Connected: Twittermentioning
confidence: 99%
“…Podemos relacionar, por ejemplo, los niveles de contaminación de la ciudad (obtenidos por medio de sensores) con la presencia de población (estimada a partir de datos de telefonía móvil) para conocer la cantidad de población expuesta a la contaminación en cada momento del día y cada área de la ciudad (Dewulf et al, 2016;Castell et al, 2017). O relacionar los datos de movilidad de la población obtenidos a partir de Twitter con las características del lugar de residencia según los datos censales, para conocer el uso del espacio de la ciudad según grupos sociales o raciales (Netto et al, 2015;Shelton et al, 2015). Así mismo, se puede indagar sobre el ritmo diario de la ciudad analizando el núme-ro de usuarios activos en Twitter según usos del suelo y formulando modelos explicativos (García-Palomares et al, 2018) (ver figura 1).…”
Section: La Revolución Del Big Data: Características De Los Datos Masunclassified
“…In particular, they review the current technologies that enable an easy creation and discovery of mobile services and list the identified requirements for UGSs. The interest in this topic is further motivated by the result of diverse studies that evaluate, for example, the impact of UGSs and especially UGC on society [21,22], tourism [8], and advertising [23]. With regard to aspects explicitly focused on service composition, some works were proposed to prevent conflicting behaviors when policies are composed.…”
Section: Related Workmentioning
confidence: 99%