Social network learning: Uncertainty, heterogeneity, and the application in principal–agent relationships
Yilin Hong,
Chuan Ding,
Peng Liu
Abstract:This paper employs algebraic transformation to describe complex social network learning (SNL) behaviors under continuous expected payoff. Three distinct algorithms are then introduced that factor in uncertainty and heterogeneity. We find that individuals' strategies tend to converge through SNL. We then construct a framework for studying the convergence process in the principal–agent relationship by applying our SNL algorithms to distinct scenarios. Our results show that network topology plays a significant ro… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.