Social-STGMLP: A Social Spatio-Temporal Graph Multi-Layer Perceptron for Pedestrian Trajectory Prediction
Dexu Meng,
Guangzhe Zhao,
Feihu Yan
Abstract:As autonomous driving technology advances, the imperative of ensuring pedestrian traffic safety becomes increasingly prominent within the design framework of autonomous driving systems. Pedestrian trajectory prediction stands out as a pivotal technology aiming to address this challenge by striving to precisely forecast pedestrians’ future trajectories, thereby enabling autonomous driving systems to execute timely and accurate decisions. However, the prevailing state-of-the-art models often rely on intricate st… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.