Fossils not only provide unique opportunity to understand the "tempo and mode" of evolution but are essential for modeling lineage-contingent diversification histories. Here, we interrogate the Mesozoic fossil record of the Aculeata, with emphasis on the ants (Formicidae), and conduct an extended series of ancestral state estimation exercises on distributions of tip-dated combined-evidence phylogenies. We developed and illustrated from ground-up a set of 576 morphological characters which we scored for 144 extant and 431 fossil taxa; we used average posterior probability support to filter this to a target matrix of 303 taxa, for which we integrated strongly filtered ultraconserved element (UCE) data for 115 living species. We also implemented reversible jump MCMC (rjMCMC) and hidden state methods to model complex behavioral characters to test hypotheses about the pathway to obligate eusociality. In addition to revising the higher classification of all sampled groups to family or subfamily level using estimated character polarities to diagnose nodes across the phylogeny, we find that the mid-Cretaceous genera †Camelomecia and †Camelosphecia form a clade which is robustly supported as sister to the total clade Formicidae. For this reason, we name this extinct clade as †@@@idae fam. nov. and provide a definition for the expanded Formicoidea. Based on our results, we recognize three major phases in the early evolution of the ants: (1) origin of ants as running-adapted huntresses during the Late Jurassic in the "stinging aggressor" guild (Aculeata) among various lineages of "sneaking parasitoids" (non-aculeate Vespina); (2) the first formicoid radiation during the Early Cretaceous, by the end of which all major extant ant linages had originated; and (3) turnover of the Formicoidea at the end-Cretaceous leading to the second formicoid radiation, i.e., the Cenozoic formicid diversification. We conclude with a concentrated series of considerations for future directions of study with this dataset and beyond.