Aim
Malnutrition in pregnant women significantly affects both mother and child health. This research aims to identify the best machine learning (ML) techniques for predicting the nutritional status of pregnant women in Bangladesh and detect the most essential features based on the best-performed algorithm.
Methods
This study used retrospective cross-sectional data from the Bangladeshi Demographic and Health Survey 2017–18. Different feature transformations and machine learning classifiers were applied to find the best transformation and classification model.
Results
This investigation found that robust scaling outperformed all feature transformation methods. The result shows that the Random Forest algorithm with robust scaling outperforms all other machine learning algorithms with 74.75% accuracy, 57.91% kappa statistics, 73.36% precision, 73.08% recall, and 73.09% f1 score. In addition, the Random Forest algorithm had the highest precision (76.76%) and f1 score (71.71%) for predicting the underweight class, as well as an expected precision of 82.01% and f1 score of 83.78% for the overweight/obese class when compared to other algorithms with a robust scaling method. The respondent’s age, wealth index, region, husband’s education level, husband’s age, and occupation were crucial features for predicting the nutritional status of pregnant women in Bangladesh.
Conclusion
The proposed classifier could help predict the expected outcome and reduce the burden of malnutrition among pregnant women in Bangladesh.