We previously demonstrated that postruminal casein infusion and exogenous glucagon-like peptide 2 (GLP-2) administration independently stimulated growth and carbohydrase activity of the pancreas and jejunal mucosa in cattle. The objective of the current study was to profile the jejunal mucosal transcriptome of cattle using next-generation RNA sequencing in response to postruminal casein infusion and exogenous GLP-2. Twenty-four Holstein steers [250 ± 23.1 kg body weight (BW)] received a continuous abomasal infusion of 3.94 g raw corn starch/kg of BW combined with either 0 or 1.30 g casein/kg of BW for 7 d. Steers received subcutaneous injections at 0800 and 2000 h to provide either 0 or 100 μg GLP-2/kg of BW per day. At the end of the 7-d treatment period, steers were slaughtered for collection of the jejunal mucosa. Total RNA was extracted from jejunal mucosal tissue, strand-specific cDNA libraries were prepared, and RNA sequencing was conducted to generate 150-bp paired-end reads at a depth of 40 M reads per sample. Differentially expressed genes (DEG), KEGG pathway enrichment, and gene ontology enrichment were determined based on the FDR-corrected P-value (padj). Exogenous GLP-2 administration upregulated (padj < 0.05) 667 genes and downregulated 1,101 genes of the jejunal mucosa. Sphingolipid metabolism, bile secretion, adherens junction, and galactose metabolism were among the top KEGG pathways enriched with upregulated DEG (padj < 0.05) in response to exogenous GLP-2 administration. The top gene ontologies enriched with upregulated DEG (padj < 0.05) in response to exogenous GLP-2 administration included nutrient metabolic processes, brush border and bicellular tight junction assembly, and enzyme and transporter activities. Exogenous GLP-2 administration increased or tended to increase (padj < 0.10) brush border carbohydrase (MGAM, LCT, TREH), hexose transporter (SLC5A1, SLC2A2), and associated transcription factor (HNF1, GATA4, KAT2B) mRNA expression of the jejunal mucosa. Gene ontologies and KEGG pathways that were downregulated (padj < 0.05) in response to exogenous GLP-2 were related to genetic information processing. Postruminal casein infusion downregulated (padj < 0.05) 7 jejunal mucosal genes that collectively did not result in enriched KEGG pathways or gene ontologies. This study highlights some of the transcriptional mechanisms associated with increased growth, starch assimilation capacity, and barrier function of the jejunal mucosa in response to exogenous GLP-2 administration.