Several forebrain and brainstem neurochemical circuitries interact with
peripheral neural and humoral signals to collaboratively maintain both the
volume and osmolality of extracellular fluids. Although much progress has been
made over the past decades in the understanding of complex mechanisms underlying
neuroendocrine control of hydromineral homeostasis, several issues still remain
to be clarified. The use of techniques such as molecular biology, neuronal
tracing, electrophysiology, immunohistochemistry, and microinfusions has
significantly improved our ability to identify neuronal phenotypes and their
signals, including those related to neuron-glia interactions. Accordingly,
neurons have been shown to produce and release a large number of chemical
mediators (neurotransmitters, neurohormones and neuromodulators) into the
interstitial space, which include not only classic neurotransmitters, such as
acetylcholine, amines (noradrenaline, serotonin) and amino acids (glutamate,
GABA), but also gaseous (nitric oxide, carbon monoxide and hydrogen sulfide) and
lipid-derived (endocannabinoids) mediators. This efferent response, initiated
within the neuronal environment, recruits several peripheral effectors, such as
hormones (glucocorticoids, angiotensin II, estrogen), which in turn modulate
central nervous system responsiveness to systemic challenges. Therefore, in this
review, we shall evaluate in an integrated manner the physiological control of
body fluid homeostasis from the molecular aspects to the systemic and integrated
responses.