The structures of Zr(IV) phosphonate-phosphate based, unconventional metal organic framework materials have been determined using atomic pair distribution function analysis of high energy, X-ray total scattering diffraction data. They are found to form as nanocrystalline layers of Zr phosphate, similar to the bulk, but with a high degree of interlayer disorder and intermediate intralayer order extending around 5 nm. These materials are of interest for their high selectivity for 3+ lanthanide ions. To investigate the mechanism of the selectivity, we utilize difference pair distribution function analysis to extract the local structural environment of Tb ions loaded into the framework. The ions are found to sit between the layers in a manner resembling the local environment of Tb in Scheelite-type terbium phosphate. By mapping this local structure onto that of the refined structure for zirconium-phenyl-phosphonate, we show how dangling oxygens from the phosphate groups, acting like nose hairs, are able to reorient to provide a friendly intercalation environment for the Tb ions.