In this paper, we introduce a new dynamic model of simulation of electrocardiograms (ECGs) affected by pathologies starting from the well-known McSharry dynamic model for the ECGs without cardiac disorders. In particular, the McSharry model has been generalized (by a linear transformation and a rotation) for simulating ECGs affected by heart diseases verifying, from one hand, the existence and uniqueness of the solution and, on the other hand, if it admits instabilities. The results, obtained numerically by a procedure based on a Four Stage Lobatto IIIa formula, show the good performances of the proposed model in producing ECGs with or without heart diseases very similar to those achieved directly on the patients. Moreover, verified that the ECGs signals are affected by uncertainty and/or imprecision through the computation of the linear index and the fuzzy entropy index (whose values obtained are close to unity), these similarities among ECGs signals (with or without heart diseases) have been quantified by a well-established fuzzy approach based on fuzzy similarity computations highlighting that the proposed model to simulate ECGs affected by pathologies can be considered as a solid starting point for the development of synthetic pathological ECGs signals.