2008
DOI: 10.1016/j.neucom.2007.07.018
|View full text |Cite
|
Sign up to set email alerts
|

Soft-computing techniques and ARMA model for time series prediction

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
78
0
3

Year Published

2009
2009
2023
2023

Publication Types

Select...
6
2

Relationship

0
8

Authors

Journals

citations
Cited by 199 publications
(81 citation statements)
references
References 36 publications
0
78
0
3
Order By: Relevance
“…As shown in Fig.1 (2) In the input layer, the input variables comprise one input for the bias, the output vector C of the non-linear functional expansion block, three popular technical indicators, and one input for the recurrent link obtained by feeding back one step delayed output. Thus the final input vector is obtained as…”
Section: Development Of a Stock Forecasting System Using Pflarnn Modelmentioning
confidence: 99%
See 1 more Smart Citation
“…As shown in Fig.1 (2) In the input layer, the input variables comprise one input for the bias, the output vector C of the non-linear functional expansion block, three popular technical indicators, and one input for the recurrent link obtained by feeding back one step delayed output. Thus the final input vector is obtained as…”
Section: Development Of a Stock Forecasting System Using Pflarnn Modelmentioning
confidence: 99%
“…A significant amount of studies has been done in this field that includes hybrid combinations of soft computing technology and data mining analysis applied to stock data prediction over a time frame varying from one day ahead to several days ahead. Traditionally, the linear statistical models like autoregressive moving average (ARMA) or ARIM [1][2][3] used for time series forecasting are simple but suffer International Journal of Computational Intelligence Systems, Vol. 8, No.…”
Section: Introductionmentioning
confidence: 99%
“…A hybrid of ARIMA and support vector machines was successfully presented by Pai et.al [8] for predicting stock prices problems. Other outstanding hybrid approaches could be found in references [9][10][11]. Most of these hybrid models were implemented as a following process: first, the model-based technique was used to predict the linear relation, then the data-driven based technique was utilized to forecast the residuals between actual values and predicted results obtained from previous step.…”
Section: Introductionmentioning
confidence: 99%
“…Huang e colaboradores descreveram em seu artigo a utilização de redes neurais artificiais na previsão de preços em uma série temporal financeira e as vantagens em se acoplar outros métodos de análise de séries temporais [5]. Rojas e colaboradores estudaram uma metodologia híbrida acoplando redes neurais artificiais e o modelo de séries temporais ARMA (Autoregressive Moving Average Model) [6].…”
Section: Introductionunclassified
“…Huang e colaboradores descreveram em seu artigo a utilização de redes neurais artificiais na previsão de preços em uma série temporal financeira e as vantagens em se acoplar outros métodos de análise de séries temporais [5]. Rojas e colaboradores estudaram uma metodologia híbrida acoplando redes neurais artificiais e o modelo de séries temporais ARMA (Autoregressive Moving Average Model) [6].É nesse contexto, que o presente trabalho propõe um método de parametrização, por meio de algoritmo genético, do indicador de análise técnica do mercado financeiro MACD (Moving Average Convergence-Divergence) e a utilização de um sistema de inferência fuzzy que possa maximizar o lucro de investimentos nas ordens de compra e venda desse indicador. O…”
unclassified