The Internet of Things (IoT) is advancing toward a world of ubiquitous electronic devices, composed in large part of low-cost printed electronics (PE) such as sensors. PE typically use plastic substrates, such as polyethylene terephthalate (PET), but these materials are not biodegradable. The proliferation of PE devices and their degradation to form micro- and nanoplastics pose significant environmental hazards. Paper is a promising substrate to replace PET for greener printed electronics due to its recyclability, affordability, and compatibility with many printing processes. However, the porous cellulosic structure of paper can be an obstacle when trying to print active inks due to wicking of the ink into the paper pores, which disperses the functional ink and negatively impacts electronic performance. Filling the pores of paper with a polymer to planarize the surface is a commonly used remedy, although this approach can compromise recyclability. Here, we present an approach to manage the dispersion of silver nanowires, a widely used and printable 1D nanomaterial ink, in paper substrates. We deposit solutions of short (20 to 30 microns) and long (100 to 200 microns) silver nanowires onto various graded filter papers that differ in pore size and examine the trends in wicking distance, wicking speed, and electrical properties. We show that with careful selection of AgNW length and the pore size of the paper, it is possible to control the lateral spreading of the ink and minimize the concentration of the AgNWs needed to achieve a specific electrical performance.