Amid rising global demand for sustainable energy, wind energy emerges as a crucial renewable resource, with the aerodynamic optimization of wind turbine blades playing a key role in enhancing energy efficiency. This systematic review scrutinizes recent advancements in blade aerodynamics, focusing on the integration of cutting-edge aerodynamic profiles, variable pitch and twist technologies, and innovative materials. It extensively explores the impact of Computational Fluid Dynamics (CFD) and Artificial Intelligence (AI) on blade design enhancements, illustrating their significant contributions to aerodynamic efficiency improvements. By reviewing research from the last decade, this paper provides a comprehensive overview of current trends, addresses ongoing challenges, and suggests potential future developments in wind turbine blade optimization. Aimed at researchers, engineers, and policymakers, this review serves as a crucial resource, guiding further innovations and aligning with global renewable energy objectives. Ultimately, this work seeks to facilitate technological advancements that enhance the efficiency and viability of wind energy solutions.