We study the pair production, string breaking, and hadronization of a receding electron-positron pair using the bosonized version of the massive Schwinger model in quantum electrodynamics in 1+1 space-time dimensions. Specifically, we study the dynamics of the electric field in Bjorken coordinates by splitting it into a coherent field and its Gaussian fluctuations. We find that the electric field shows damped oscillations, reflecting pair production. Interestingly, the computation of the asymptotic total particle density per rapidity interval for large masses can be fitted using a Boltzmann factor, where the temperature can be related to the hadronization temperature in QCD. Lastly, we discuss the possibility of an analog quantum simulation of the massive Schwinger model using ultracold atoms, explicitly matching the potential of the Schwinger model to the effective potential for the relative phase of two linearly coupled Bose-Einstein condensates.
Published by the American Physical Society
2024