In this article, a soft s-open set in soft bitopological structures is introduced. With the help of this newly defined soft s-open set, soft separation axioms are regenerated in soft bitopological structures with respect to crisp points. Soft continuity at some certain points, soft bases, soft subbase, soft homeomorphism, soft first-countable and soft second-countable, soft connected, soft disconnected and soft locally connected spaces are defined with respect to crisp points under s-open sets in soft bitopological spaces. The product of two soft axioms with respect crisp points with almost all possibilities in soft bitopological spaces relative to semiopen sets are introduced. In addition to this, soft (countability, base, subbase, finite intersection property, continuity) are addressed with respect to semiopen sets in soft bitopological spaces. Product of soft first and second coordinate spaces are addressed with respect to semiopen sets in soft bitopological spaces. The characterization of soft separation axioms with soft connectedness is addressed with respect to semiopen sets in soft bitopological spaces. In addition to this, the product of two soft topological spaces is ( space if each coordinate space is soft space, product of two sot topological spaces is (S regular and C regular) space if each coordinate space is (S regular and C regular), the product of two soft topological spaces is connected if each coordinate space is soft connected and the product of two soft topological spaces is (first-countable, second-countable) if each coordinate space is (first countable, second-countable).