2023
DOI: 10.48550/arxiv.2303.15846
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Soft-prompt tuning to predict lung cancer using primary care free-text Dutch medical notes

Abstract: We investigate different natural language processing (NLP) approaches based on contextualised word representations for the problem of early prediction of lung cancer using free-text patient medical notes of Dutch primary care physicians. Because lung cancer has a low prevalence in primary care, we also address the problem of classification under highly imbalanced classes. Specifically, we use large Transformer-based pretrained language models (PLMs) and investigate: 1) how soft prompttuning-an NLP technique us… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 19 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?