2022
DOI: 10.1007/s00521-022-07771-8
|View full text |Cite
|
Sign up to set email alerts
|

Soft sensor for the prediction of oxygen content in boiler flue gas using neural networks and extreme gradient boosting

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
4
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
8
1

Relationship

1
8

Authors

Journals

citations
Cited by 10 publications
(5 citation statements)
references
References 44 publications
0
4
0
1
Order By: Relevance
“…Salah satu pendekatan populer yang diyakini bisa menyelesaikan berbagai masalah dalam deteksi adalah dengan teknik dan aplikasi jaringan saraf tiruan (JST) [4]- [7]. JST telah semakin banyak dieksplorasi selama dua dekade terakhir termasuk di proses industri.…”
Section: Pendahuluanunclassified
“…Salah satu pendekatan populer yang diyakini bisa menyelesaikan berbagai masalah dalam deteksi adalah dengan teknik dan aplikasi jaringan saraf tiruan (JST) [4]- [7]. JST telah semakin banyak dieksplorasi selama dua dekade terakhir termasuk di proses industri.…”
Section: Pendahuluanunclassified
“…Furthermore, by integrating the BPNN and the genetic algorithm (GA), a soft measurement approach for measuring the oxygen content in a power plant's flue gas was proposed [16]. A method combining extreme gradient boosting (XGBoost) and ANN was proposed to predict the oxygen content in boilers [17]. By implementing the aforementioned method, satisfactory experimental results could be obtained via effective measurement of the oxygen content in the flue gas.…”
Section: Introductionmentioning
confidence: 99%
“…Recently, the rapid development of deep learning and image processing methods has brought great changes to the industry. Compared with the various limitations of physical measurement instruments, deep-learning-based soft measurement technology of combustion oxygen content is becoming a hot topic for researchers. The input data to the soft sensors in refs are the process variables of the combustion system. This requires the construction of data sets by combining measurements from multiple sensors.…”
Section: Introductionmentioning
confidence: 99%