Micro-arc oxidation (MAO) is a promising technology for enhancing the wear resistance of engine cylinders by growing a high hardness alumina ceramic film on the surface of light aluminum engine cylinders. However, the positive and negative pulse coordination, voltage characteristic signal, hardness distribution characteristics of the ceramic film, and their internal mechanism during the growth process are still unclear. This paper investigates the synergistic effect mechanism of cathodic and anodic current on the growth behaviour of alumina, dynamic voltage signal, and hardness distribution of micro-arc oxidation film. Ceramic film samples were fabricated under various conditions, including current densities of 10, 12, 14, and 16 A/dm2, and current density ratios of cathode and anode of 1.1, 1.2, and 1.3, respectively. Based on the observed characteristics of the process voltage curve and the spark signal changes, the growth of the ceramic film can be divided into five stages. The influence of positive and negative current density parameters on the segmented growth process of the ceramic film is mainly reflected in the transition time, voltage variation rate, and the voltage value of different growth stages. Enhancing the cathode pulse effect or increasing the current density level can effectively shorten the transition time and accelerate the voltage drop rate. The microhardness of the ceramic film cross-section presents a discontinuous soft-hard-soft regional distribution. Multiple thermal cycles lead to a gradient differentiation of the Al2O3 crystal phase transition ratio along the thickness direction of the layer. The layer grown on the outer surface of the initial substrate exhibits the highest hardness, with a small gradient change in hardness, forming a high hardness zone approximately 20–30 μm wide. This high hardness zone extends to both sides, with hardness decreasing rapidly.