<abstract><p>With the advancement of technology, social media has become an integral part of people's daily lives. This has resulted in the emergence of a new group of individuals known as "professional operation people". These individuals actively engage with social media platforms, taking on roles as content creators, influencers, or professionals utilizing social media for marketing and networking purposes. Therefore, in this article, we designed a six-dimensional fractional-order social media addiction model (FOSMA) in the sense of Caputo, which took into account the professional operations population. Initially, we established the positivity and boundedness of the FOSMA model. After that, the basic regeneration number and the equilibrium points (no addiction equilibrium point and addiction equilibrium point) were computed. Then, the local asymptotic stability of the equilibrium points were proved. In order to investigate the bifurcation behavior of the model when $ R_0 = 1, $ we extended the Sotomayor theorem from integer-order to fractional-order systems. Next, by the frequency analysis method, we converted the fractional order model into an equivalent partial differential system. The tanh function was introduced into the scheme of sliding mode surface. The elimination of addiction was achieved by the action of the fractional order sliding mode control law. Finally, simulation results showed that fractional order values, nonlinear transmission rates, and specialized operating populations had a significant impact on predicting and controlling addiction. The fractional-order sliding mode control we designed played an important role in eliminating chatter, controlling addiction, and ensuring long-term effectiveness. The results of this paper have far-reaching implications for future work on modeling and control of fractional-order systems in different scenarios, such as epidemic spread, ecosystem stabilization, and game addiction.</p></abstract>