Many philosophical accounts of scientific models fail to distinguish between a simulation model and other forms of models. This failure is unfortunate because there are important differences pertaining to their methodology and epistemology that favor their philosophical understanding. The core claim presented here is that simulation models are rich and complex units of analysis in their own right, that they depart from known forms of scientific models in significant ways, and that a proper understanding of the type of model simulations are fundamental for their philosophical assessment. I argue that simulation models can be distinguished from other forms of models by the many algorithmic structures, representation relations, and new semantic connections involved in their architecture. In this article, I reconstruct a general architecture for a simulation model, one that faithfully captures the complexities involved in most scientific research with computer simulations. Furthermore, I submit that a new methodology capable of conforming such architecture into a fully functional, computationally tractable computer simulation must be in place. I discuss this methodology-what I call recasting-and argue for its philosophical novelty. If these efforts are heading towards the right interpretation of simulation models, then one can show that computer simulations shed new light on the philosophy of science. To illustrate the potential of my interpretation of simulation models, I briefly discuss simulation-based explanations as a novel approach to questions about scientific explanation.