NaOsO 3 has recently attracted significant attention for the strong coupling between its electronic band structure and magnetic ordering. Here, we used time-resolved magnetic x-ray diffraction to determine the timescale of the photoinduced antiferromagnetic dynamics in NaOsO 3 . Our measurements are consistent with a sub-100 fs melting of the antiferromagnetic long-range order that occurs significantly faster than the lattice dynamics as monitored by the transient change in intensity of selected Bragg structural reflections, which instead show a decrease of intensity on a timescale of several ps.