Electronic structure calculations of many-electron systems should in principle treat relativistic, correlation, and quantum electrodynamics (QED) effects simultaneously to a high precision, so as to match experimental measurements as close as possible. While both relativistic and QED effects can readily be built into the many-electron Hamiltonian, electron correlation is more difficult to describe due to the exponential growth of the number of parameters in the wave function. Compared with the spin-free case, spin-orbit interaction results in the loss of spin symmetry and concomitant complex algebra, thereby rendering the treatment of electron correlation even more difficult. Possible solutions to these issues are highlighted here.