Clay minerals constitute an important component of the soil system and knowledge of their role in soil fertility is imperative for sustainable soil management and productivity. The aim of this work is to overview the influence of clay minerals on some major soil fertility attributes. The rationale for carrying out this work is that most soil fertility studies rarely incorporate soil mineralogy. Clay minerals, through their physical and chemical properties, affect soil fertility by controlling nutrient supplies and availability, through the sequestration and stabilization of soil organic matter, by controlling soil physical properties through microaggregate formation, by influencing soil acidity and controlling soil microbial population and activity. The main processes involved in these relationships are dissolution-precipitation and adsorption-desorption processes, alongside mechanisms involving the formation of short-range-ordered phases. Although the determination of soil mineralogical properties is very costly and time-consuming, information about a soil's mineralogy is imperative for a holistic understanding and proper management of soil fertility. Therefore, the development of rapid, low-cost, reliable and efficient techniques of soil mineralogical analysis, directly applicable to soil fertility investigations, constitutes a major challenge. Also, future research should investigate the relationships between clay minerals and soil nitrogen vis-à-vis sequestration and stabilization. Lastly, clay minerals should be considered in studies dealing with soil quality assessment, especially in the choice of soil quality indicators.