2018
DOI: 10.5194/gmd-11-2009-2018
|View full text |Cite
|
Sign up to set email alerts
|

Soil Methanotrophy Model (MeMo v1.0): a process-based model to quantify global uptake of atmospheric methane by soil

Abstract: Abstract. Soil bacteria known as methanotrophs are the sole biological sink for atmospheric methane (CH 4 ), a potent greenhouse gas that is responsible for ∼ 20 % of the humandriven increase in radiative forcing since pre-industrial times. Soil methanotrophy is controlled by a plethora of factors, including temperature, soil texture, moisture and nitrogen content, resulting in spatially and temporally heterogeneous rates of soil methanotrophy. As a consequence, the exact magnitude of the global soil sink, as … Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

3
71
0
18

Year Published

2018
2018
2024
2024

Publication Types

Select...
4
2
1
1

Relationship

0
8

Authors

Journals

citations
Cited by 71 publications
(112 citation statements)
references
References 87 publications
3
71
0
18
Order By: Relevance
“…Our results also have important implications for improving the performance of process-based models to simulate and quantify the effect of global N deposition on soil CH 4 sinks (e.g., Ridgwell et al, 1999;Curry, 2007;Murguia-Flores et al, 2018). Currently, the existing models simply account for a negative effect of N inputs on soil CH 4 uptake by involving an inhibition factor (Ridgwell et al, 1999;Curry et al, 2007;Murguia-Flores et al, 2018).…”
Section: Uncertainties and Implicationsmentioning
confidence: 88%
See 2 more Smart Citations
“…Our results also have important implications for improving the performance of process-based models to simulate and quantify the effect of global N deposition on soil CH 4 sinks (e.g., Ridgwell et al, 1999;Curry, 2007;Murguia-Flores et al, 2018). Currently, the existing models simply account for a negative effect of N inputs on soil CH 4 uptake by involving an inhibition factor (Ridgwell et al, 1999;Curry et al, 2007;Murguia-Flores et al, 2018).…”
Section: Uncertainties and Implicationsmentioning
confidence: 88%
“…Based on the mean rate of growing-season soil CH 4 uptake (-0.038±0.029 mg CH 4 m -2 h -1 ) for tropical forest (Dutaur and Verchot, 2007), biomescale soil CH 4 sink in tropical forest was estimated to be -5.99±4.57 Tg CH 4 . Overall, global forest soils contributed to a CH 4 sink of 18.5 Tg CH 4 during growing season, accounting for more than half of the annual sum soil CH 4 sink (~30 Tg CH 4 yr -1 ) in global terrestrial biomes (Kirschke et al, 2013;Murguia-Flores et al, 2018). If the amount of soil CH 4 sink in nongrowing season is accounted, forest soils can contribute an even higher proportion of global soil CH 4 sinks.…”
Section: Variations In Growing-season Soil Ch 4 Uptake Across Forest mentioning
confidence: 99%
See 1 more Smart Citation
“…где V cons,0 -базовая константа потребления при некоторых условиях среды (час -1 ), обычно этомаксимальная константа, достигаемая при оптимальных условиях; f i -переменные по глубине безразмерные эмпирические функции параметров среды (если V cons,0 имеет смысл максимальной константы, то 0 ≤ f i ≤ 1). Они определяются либо на основе лабораторных экспериментов с отобранными образцами почвы [5], либо на основе полевых данных путём решения задачи оптимизации, когда подбираются такие их значения, которые позволят получить модельные значения удельных потоков СН 4 , наиболее близкие к экспериментально измеренным [3]. Такое феноменологическое описание позволяет отразить только влияние тех факторов среды, которые учтены в (2).…”
Section: Introductionunclassified
“…458 Other errors are derived from input data imperfections and difficulties meeting modeling assumptions. 459 These errors in soil moisture modeling inputs increase the risk of bias and uncertainty propagation to 460 subsequent soil moisture modeling outputs and soil mapping applications [72][73][74]. For example, 461 elevation data surfaces derived from remote sensing data (such as the global DEM used here) could 462 show artifacts (i.e., false pikes or spurious sinks) due to data saturation or signal noise that can be 463 propagated to final soil moisture predictions [75].…”
mentioning
confidence: 99%