Fertilizers have become a necessity in plant production to fulfill the rapid rise in population and, as a result, the increased nutritional needs. However, the unintended and excessive use of chemical fertilizers causes many problems and has a negative impact on agricultural production in many countries today. The inability to determine the amount, types, and application periods of the applied fertilizers adversely affects the natural environment, resulting in global warming and climate change, as well as the occurrence of additional abiotic stressors that have an impact on agricultural productivity. Hence, alternatives to chemical fertilizers and pesticides, such as the use of biofertilizers, must be explored for the betterment of agricultural production in a manner that does not jeopardize the ecological balance. Bacteria residing in the plant’s rhizosphere can help with plant development, disease management, harmful chemical removal, and nutrient absorption. Introducing such phytomicrobiome into the agricultural industry is an effective approach as a result of its long-term and environmentally favorable mechanisms to preserve plant health and quality. Hence, this chapter aims at highlighting the deleterious effects of chemical fertilizers and providing a striking demonstration of how effectively plant-growth-promoting rhizobacteria (PGPR) can be used to increase the agriculture production in the context of climate change.