2022
DOI: 10.1109/tgrs.2021.3134127
|View full text |Cite
|
Sign up to set email alerts
|

Soil Moisture Estimation Using Sentinel-1/-2 Imagery Coupled With CycleGAN for Time-Series Gap Filing

Abstract: Fast soil moisture content (SMC) mapping is necessary to support water resource management and to understand crops' growth, quality and yield. Thereby, Earth Observation (EO) plays a key role due to its ability of almost real-time monitoring of large areas at a low cost. This study aimed to explore the possibility of taking advantage of freely available Sentinel-1 (S1) and Sentinel-2 (S2) EO data for the simultaneous prediction of SMC with cycle-consistent adversarial network (cycleGAN) for time-series gap fil… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
6
0
1

Year Published

2022
2022
2025
2025

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 27 publications
(7 citation statements)
references
References 39 publications
0
6
0
1
Order By: Relevance
“…Por otra parte, los modelos predictivos en la agricultura se han tratado en conjunto, según evidencia el segundo mayor clúster, se destaca las investigaciones relacionadas con la toma de decisiones, aprendizaje automático, árboles de decisión, sistema de aprendizajes, vectores de soporte automáticos, monitoreo, agricultura de precisión, adquisición de datos, meteorología, aprendizaje profundo, redes neuronales y pronóstico, es importante destacar que son métodos que incluyen la variable económico-financiera como principal factor (Caicedo Solano et al, 2022;Efremova et al, 2022;Jamei et al, 2022;Kassem et al, 2022;Kussul et al, 2022).…”
Section: Resultados Y Discusiónunclassified
“…Por otra parte, los modelos predictivos en la agricultura se han tratado en conjunto, según evidencia el segundo mayor clúster, se destaca las investigaciones relacionadas con la toma de decisiones, aprendizaje automático, árboles de decisión, sistema de aprendizajes, vectores de soporte automáticos, monitoreo, agricultura de precisión, adquisición de datos, meteorología, aprendizaje profundo, redes neuronales y pronóstico, es importante destacar que son métodos que incluyen la variable económico-financiera como principal factor (Caicedo Solano et al, 2022;Efremova et al, 2022;Jamei et al, 2022;Kassem et al, 2022;Kussul et al, 2022).…”
Section: Resultados Y Discusiónunclassified
“…Pix2pix GAN has been used to generate near-infrared band from RGB images acquired by unmanned aerial vehicle much more efficiently than the endmembers method 33 . Time series soil moisture content was estimated using Sentinel-1 images using the CycleGAN model 25 . Similarly, GANs are also used for cloud removal in optical images 34 …”
Section: Related Workmentioning
confidence: 99%
“…33 Time series soil moisture content was estimated using Sentinel-1 images using the CycleGAN model. 25 Similarly, GANs are also used for cloud removal in optical images. 34 Cloud cover is the major issue in vegetation monitoring using optical data.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…However, a severe lack of optical data observations may occur in the event of prolonged cloud cover, which is quite frequent when crops, particularly cereals, are cultivated during the wet season, as in the South Mediterranean regions. To deal with this issue, [44] have proposed framework for unsupervised deep domain adaptation for radar and optical satellite imagery with cycle-consistent adversarial network (cycleGANs). In the same vein, using a large in-situ database collected from several irrigated and rainfed wheat in Morocco and Tunisia countries, [45] have developed a new approach to predict SSM, based only on two complementary and relatively independent information extracted from Sentinel-1 radar including backscattering coefficient and interferometric coherence (ρ).…”
Section: Introductionmentioning
confidence: 99%