Molybdenum (Mo), a plant micronutrient, is involved in nitrogen (N) cycling of global ecosystem, but little is known about its effect on soil N transformation especially the key processes nitrification and denitrification. A long-term field experiment was carried out to investigate the effects of continuous sufficient soil available Mo on vegetable N uptake and soil N transformation. The experiment consisted of three treatments: control (CK), Mo deficiency (NPK), and Mo application (NPK+Mo). The results show that (1) after a 7-year-experiment, continuous Mo application significantly increased soil available Mo content. (2) Compared to the NPK treatment, NPK+Mo treatment showed an increase of 11, 18, and 8% in the cumulative crop yield, plant N uptake, and N fertilizer use efficiency. (3) With continuous Mo application, the soil NO À 3 -N, NH þ 4 -N, microbial biomass N, and total N contents were reduced by 14, 29, 40, and 12%, the soil nitrate reductase (NR) and nitrite reductase (NiR) activities were reduced by 14 and 8%, as well as the potential denitrification activity (PDA) and gross nitrification rate (GNR) were decreased by 64 and 80%, respectively. Additionally, continuous Mo application decreased the abundance of ammonia-oxidizing archaea (AOA) and increased the abundance of narG-containing denitrifiers (narG) and nirK-type nitrite reducers (nirK) significantly. The data suggest that a deficiency in soil available Mo may induce the risk of soil N accumulation and environmental N emission in vegetable soil, whereas continuous Mo application could mitigate this risk by increasing crop yield and N uptake and, by decreasing soil N residues, soil nitrification and denitrification.