In calcareous soils, wheat productivity is much lower due to improper nutrient management, especially phosphorus (P). Therefore, this study was conducted to manage P availability from various organic (Control, FYM and Sugar cane straw applied at the rate of 10 ton ha−1) and inorganic (Control, 100% rock phosphate (RP), 50% acidulated RP, 100% acidulated RP, single super phosphate (SSP) and diammonium phosphate (DAP)) sources applied at the rate of 90 kg P2O5 ha−1 in calcareous soil while using wheat as test crop. When averaged across the organic sources, SSP performed better in emergence m−2 (126), tillers m−2 (431), spikes m−2 (419), grains spikes−1 (61), plant height (95.1 cm), 1000-GW (40 g), biological yield (11,023 kg ha−1), grain yield (4022 kg ha−1), phosphorus use efficiency (10.5%), phosphorus in leaves at tillering (2.63 mg kg−1) and anthesis stage (2.50 mg kg−1), soil P at heading (1.73 mg kg−1) and post-harvest stage (1.56 mg kg−1) compared to the rest of the mineral sources. Similarly, among the organic sources, FYM performed better than others for all tested traits. Integration of inorganic P sources with organic manures further improved crop performance and post-harvest soil P content. Therefore, using 10 tons FYM ha−1 in integration to SSP or 100% acidulated RP at the rate of 90 kg P2O5 ha−1 is recommended for ensuring optimum wheat productivity under calcareous soils.