Tannery sludge usually has high content of trivalent chromium (Cr(III)) and ammonium-nitrogen (NH4+-N). It is important to make a critical evaluation of the releasing behaviors of Cr(III) and NH4+-N from tannery sludge before its use on improving soil fertility in agricultural applications. For this purpose, static batch and dynamic leaching experiments with different mathematical models were carried out to simulate the Cr(III) and NH4+-N releasing kinetics from tannery sludge sampled in a typical tannery disposal site in North China, and their influencing factors were also discussed. The results showed that a larger solid-liquid ratio, a higher temperature, and a lower pH value of the leaching solution were beneficial for the release of Cr(III) and NH4+-N from the tannery sludge. The release kinetics of Cr(III) and NH4+-N followed parabolic diffusion and simple Elovich models both in the static and dynamic leaching conditions, indicating that the release was a complex heterogeneous diffusion process. The NH4+-N was easy to be leached out and its released amount reached 3.14 mg/g under the dynamic leaching condition (pH 7), whereas the released amount of the Cr(III) was only 0.27 μg/g from the tannery sludge. There was a positive correlation coefficient between dissolved Fe and Cr(III) in the leachate under different leaching conditions, and the calculated average ratio of Fe/Cr(III) concentration was 3.56, indicating that the small amount of the released Cr(III) came from the dissolution of Cr0.25Fe0.75(OH)3 minerals in tannery sludge.