Digitalization has impacted agricultural and food production systems, and makes application of technologies and advanced data processing techniques in agricultural field possible. Digital farming aims to use available information from agricultural assets to solve several existing challenges for addressing food security, climate protection, and resource management. However, the agricultural sector is complex, dynamic, and requires sophisticated management systems. The digital approaches are expected to provide more optimization and further decision-making supports. Digital twin in agriculture is a virtual representation of a farm with great potential for enhancing productivity and efficiency while declining energy usage and losses. This review describes the state-of-the-art of digital twin concepts along with different digital technologies and techniques in agricultural contexts. It presents a general framework of digital twins in soil, irrigation, robotics, farm machineries, and food post-harvest processing in agricultural field. Data recording, modeling including artificial intelligence, big data, simulation, analysis, prediction, and communication aspects (e.g., Internet of Things, wireless technologies) of digital twin in agriculture are discussed. Digital twin systems can support farmers as a next generation of digitalization paradigm by continuous and real-time monitoring of physical world (farm) and updating the state of virtual world.