Soil solarization is a preplanting technique used in hot climates to control weeds and soilborne pathogens consisting of mulching the soil surface with polyethylene sheets. The increase in temperature associated with solarized soil could affect nitrogen availability for grain legume crops through effects on nitrogen fixing soil microorganisms or other mechanisms. To examine the effects of solarization on natural root nodulation and nitrogen accumulation and partitioning in the plant, two solarization field experiments were carried out over two planting seasons, involving genotypes of both faba bean (Vicia faba) and chickpea (Cicer arietinum). The effect of sowing date was also studied in the first season. Solarization increased the maximum soil temperature by 9-10°C in the first, and by 13-15°C in the second season. At 5 cm below the solarized soil surface, a temperature of over 46°C prevailed for 146 and 280 h over the two respective seasons, while this temperature was not attained in unmulched soil. Solarization delayed the initiation of nodulation and consistently reduced the nodule number per host plant, but generated an approximate doubling of mean nodule weight. The total nodule mass per plant was not affected by the treatment in the first season, but was reduced in the second season. Solarization significantly increased the concentrations of NO 3 À -N, Na + , Zn 2+ , Ca 2+ and K + in the soil extract, and the total nitrogen accumulated in the whole plant. This latter increase was due to both higher plant growth and a greater plant nitrogen concentration. The increased nitrogen level in the plant was not uniform with respect to plant component, varying from 57% in the roots to 198% in the pods and seeds. The plants grown in non-solarized soil accumulated about 31% of their total N content in the shoots of the parasitic weed Orobanche crenata. Solarization dramatically improved grain yield by 300-900% in both seasons and in all genotypes studied, due to increased N availability in soil, N accumulation in plants, improved plant growth, and complete control of the parasite weed O. crenata. On the basis of these beneficial effects, soil solarization, which avoids site contamination and is suited to organic farming, should be a good opportunity in Mediterranean areas where the level and stability of grain yields are low, and the infestation of O. crenata is high.