PurposeThe purpose of this paper is to evaluate the influence of a mixture of nutrient solution, bacteria and biofilm on the consolidation, unconfined compression and desiccation characteristics of two soils that could be used in waste containment applications.Design/methodology/approachExperimental work was conducted to investigate the influence of biofilm on the desiccation, strength and consolidation characteristics of two barrier soils. The soils were evaluated with water alone and with a biofilm solution composed of nutrients, bacteria and exopolymeric substances (EPS). These solutions were mixed with a locally available clay (“red bull tallow” (RBT)) as well as a mix of 65 percent sand and 35 percent bentonite (65‐35 Mix).FindingsReductions in strength and increases in ductility are observed with biofilm amendment for two soil types. The shear strength was reduced from 413 to 313 kPa and from 198 to 179 kPa for RBT and 65‐35 Mix, respectively. Desiccation tests reveal an increase in moisture retention for early time increments in amended specimens, while both increases and decreases are noted after extended drying. Increases in the rate of consolidation and modest decreases in the compression and swell index were observed. In particular, the consolidation coefficient was increased from 0.036 to 0.064 cm2/min and from 0.060 to 0.093 cm2/min for RBT and 65‐35 Mix, respectively.Practical implicationsThese results are useful in establishing the broader impacts of using biofilm as an additive to increase the performance (e.g. reduce hydraulic conductivity and increase resistance to crack formation) of barrier materials in waste containment applications. Moreover, the data provide insight into the geotechnical implications of biofilm‐producing methanotrophic activity that occurs naturally in the covers of municipal solid waste landfills.Originality/valueVery little research has been published on the influence of biofilm on the behavior of barrier materials in general, and on geotechnical properties in particular. This paper is unique in making the connection between methanotrophic activity, soil modification and barrier material performance.