The investigation into the impact of gravel on water infiltration process and hydraulic parameters in stony soil could offer a theoretical basis to enhance water availability in rocky mountain area. A one-dimensional vertical infiltration experiment was used in this study. Six groups of gravel content of 0% (CK), 10% (W1), 20% (W2), 30% (W3), 40% (W4) and 50% (W5) were established to explore the changes in the wetting front, cumulative infiltration volume and infiltration rate. Then the accuracy of four infiltration models in simulating soil water infiltration processes was evaluated. Finally, Hydrus-1D was used to perform numerical inversion of the soil water content after infiltration. The findings revealed that: (1) When the infiltration time reached 300 min, the wetting front of the W1, W2, W3, W4 and W5 treatments was 11.00%, 17.00%, 32.25%, 38.75% and 54.50% lower than CK, the cumulative infiltration volume was 29.80%, 38.97%, 45.62%, 54.74% and 73.17% lower than CK, and the stable infiltration rate was 50.98%, 52.94%, 66.67%, 68.63% and 86.27% lower than CK. (2) The soil–water infiltration processes were accurately described by the Horton model, the coefficient of determination (R2) > 0.935. (3) The simulation results of Hydrus-1D showed that with the increase of gravel content, the values of the retention water content (θr), saturated water content (θs), shape coefficient (n) and saturated hydraulic conductivity (Ks) were decreased, the values of the reciprocal of air-entry (α) were increased. The value of R2 was more than 0.894, the root mean square error (RMSE) and mean absolute error (MAE) were less than 2%, which demonstrated that the Hydrus-1D model exhibited superior capability in simulating the changes of water content in stony soil in rocky mountain area. The findings of this study demonstrated that gravel could decrease the water infiltration process and affect the water availability. It could provide data support for the water movement process of stony soil and rational utilization of limited water resources in mountainous area.