Fires play an important role in the modern dynamics of boreal ecosystems. The article presents the results of studying the effect of old fires on soils and soil organic matter (SOM) of native spruce forests that were last affected by fires in the previous 100 to 200 years. The studies were carried out in the European north-east of Russia (Komi Republic) and Central Siberia (Krasnoyarsk region). The objects of the study were typical Glossic Stagnic Retisol (Siltic, Cutanic). The time after the fire was determined by dendrochronological methods. Data on the content of water-soluble organic matter and densimetric fractions of soils were obtained; carbon and nitrogen stocks were calculated. The content of polycyclic aromatic hydrocarbons (PAHs) was established to characterize the effect of fires. Pyrogenic carbonaceous inclusions were morphologically diagnosed 200 years after the fire. In this regard, it is proposed to distinguish a “pyrogenic” subtype for soils with pronounced signs of pyrogenesis. Carbon stocks in soils of the Komi Republic varied from 5.7 to 15.7 kg C m−2, and soils of the Krasnoyarsk region had an accumulation of 6.9–12.5 kg C m−2. The contribution of the pyrogenic horizon Epyr to the total carbon and nitrogen stocks was 9–45%. It is suggested that pyrogenic carbon (PyC) can accumulate in light densimetric fractions (fPOM<1.6 and oPOM<1.6). The analysis of PAH content showed their high concentrations in the organic and upper mineral horizons of the studied soils (24 to 605 ng g−1). The coefficient FLA (fluoranthene)/(FLA+PYR(pyrene)) was the most useful to diagnose the pyrogenic origin of PAHs in the studied Retisols.