Digital financial services can introduce new digital-safety risks for users, particularly survivors of intimate partner financial abuse (IPFA). To offer improved support for such users, a comprehensive understanding of their support needs and the barriers they face to redress by financial institutions is essential. Drawing from a dataset of 2.7 million customer complaints, we implement a bespoke workflow that utilizes language-modeling techniques and expert human review to identify complaints describing IPFA. Our mixed-method analysis provides insight into the most common digital financial products involved in these attacks, and the barriers consumers report encountering when doing so. Our contributions are twofold; we offer the first human-labeled dataset for this overlooked harm and provide practical implications for technical practice, research, and design for better supporting and protecting survivors of IPFA.
CCS CONCEPTS• Human-centered computing → Empirical studies in HCI; • Computing methodologies → Information extraction; • Security and privacy → Social aspects of security and privacy.