One of the most important aspects of dental resin composites is the ability to improve mechanical properties by adding reinforcing filler particles. TiO2 nanotubes are expected to improve the physical and mechanical properties of silica micro-filled dental composite. Therefore, TiO2 nanotubes were synthesized using an alkaline hydrothermal process and then functionalized with 3-methacryloxypropyl-trimethoxysilane. TiO2 nanotubes were characterized by scanning and transmission electron microscopies, X-ray diffraction and Fourier transform infrared spectroscopy. Different quantities of TiO2 nanotubes and silica microparticles were reinforced in bisphenol A-glycidyl methacrylate (Bis-GMA) and tri-ethylene glycol dimethacrylate to prepare dental composite samples. Thereafter, the flexural strength and modulus, compressive strength, degree of conversion of monomers, wear resistance and water sorption were utlized to examine the prepared composites. The flexural strength and wear resistance of composites with 3 wt% TiO2 nanotubes significantly increased in comparison with other composites. On the other hand, due to the stability of composite, the water sorption was decreased. Therefore, TiO2 nanotubes reinforcement could be a promising solution for the improvement of mechanical properties in dental composites.