This work aims to synthesize a photocatalyst with high photocatalytic performances and explore the possibility of using it for antibiotic removal from wastewater. For that, the spinel ZnBi2O4 (ZBO) was produced with the co-precipitation method and its optical, dielectric, and electrochemical characteristics were studied. The phase has been determined and characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). For the ZBO morphology, a Scanning Electron Microscopy (SEM) has been used. Then, the optical and dielectric properties of ZBO have been evaluated by calculating refractive index n (λ), extinction coefficient (k), dissipation factor (tan δ), relaxation time (τ), and optical conductivity (σopt) using the spectral distribution of T(λ) and R(λ). An optical gap band of 2.8 eV was determined and confirmed. The electrochemical performance of ZBO was investigated and an n-type semiconductor with a flat band potential of 0.54 V_SCE was found. The photocatalytic efficiency of ZBO was investigated in order to degrade the antibiotic Cefixime (CFX) under different light source irradiations to exploit the optical properties. A high CFX degradation of approximately 89% was obtained under solar light (98 mW cm−2) only after 30 min, while 88% of CFX degradation efficiency has been reached after 2 h under UV irradiation (20 mW cm−2); this is in line with the finding of the optical characterizations. According to the obtained data, solar light assisted nanoparticle ZBO can be used successfully in wastewater to remove pharmaceutical products.