Anxiety disorder is a universal disease related to neuro-inflammation. Solanesol has shown positive effects because of its anti-inflammatory, anti-tumor, and anti-ulcer properties. This study focused on determining whether solanesol could ameliorate anxiety-like behaviors in a mouse model of neuro-inflammation and identify its working targets. Complete Freund’s adjuvant (CFA)-induced mice that were intra-peritoneally administered with solanesol (50 mg/kg) for 1 week showed a statistically significant reduction in anxiety-like behaviors, as measured by open field and elevated plus-maze tests. Western blot analysis revealed that CFA-induced upregulation of the levels of pro-inflammatory cytokines interleukin (IL)-1β and tumor necrosis factor α (TNF-α), which played crucial roles in regulating anxiety, returned to normal in the anterior cingulate cortex (ACC) after solanesol treatment. The level of T cell-restricted intracellular antigen-1 (TIA1), a key component of stress granules, also decreased in the ACC. Moreover, immunofluorescence results indicated that solanesol suppressed CFA-induced microglial and astrocytic activation in the ACC. CFA was injected in the hind paws of TIA1Nestin conditional knockout (cKO) mice to confirm whether TIA1 is a potential modulatory molecule that influences pro-inflammatory cytokines and anxiety-like behaviors. Anxiety-like behaviors could not be observed in cKO mice after CFA injection with IL-1β and TNF-α levels not remarkedly increasing. Our findings suggest that solanesol inhibits neuro-inflammation by decreasing the TIA1 level to reduce IL-1β and TNF-α expression, meanwhile inhibiting microglial and astrocytic activation in the ACC and ultimately ameliorating anxiety-like behaviors in mice.