A thin organic film of p-type semiconducting copper phthalocynanine (CuPc) was deposited by vacuum evaporation on an n-type GaAs single-crystal semiconductor substrate. The fabricated Ag/p-CuPc/n-GaAs/Ag sensor was carried through an ageing process to stabilize the parameters. Voltage-current characteristics and photoelectrical response of the sensor were investigated at a wide temperature range of 82 to 350 K. Photoelectric characteristics were measured under nonmodulated filament-lamp illumination. It was observed that such sensor parameters as rectification ratio, threshold voltage, junction, shunt and series resistances, open-circuit voltage and short circuit current are temperature-dependent. It was found that wide-range voltage-current characteristics of the sensor may be described similarly to that of a Schottky barrier diode. Using the experimental data on voltage-current characteristics and absorbance of the CuPc films, the energy-band diagram of the p-CuPc/n-GaAs heterojunction was developed. It was shown that data obtained from simulation of an equivalent circuit of photoelectric sensor agreed with experimental results. organic solar cell, organic-inorganic heterojunction, temperature dependent I-V characteristics