Many future electricity scenarios, including those from the International Energy Agency, use natural gas to bridge the transition to renewables, in particular as a means of balancing intermittent generation from new renewables. Given that such strategies may be inconsistent with strategies to limit climate change to below 2 • C, we address the question of whether such use of gas is necessary or cost effective. We conduct a techno-economic case study of Switzerland, using a cost optimization model. We explore a range of electricity costs, comparing scenarios in which gas is used as a source of base-load power, a source of balancing capacity, and not used at all. Costs at the high end of the range show that a complete decarbonization increases system-wide costs by 3% compared to a gas bridging scenario, and 13-46% compared to a carbon-intensive scenario, depending on the relative shares of solar and wind. Costs at the low end of the range show that system-wide costs are equal or lower for both completely decarbonized and gas bridging scenarios. In conclusion, gas delivers little to no cost savings as a bridging fuel in a system that switches to wind and solar.