2019
DOI: 10.1007/978-3-319-97484-2_8
|View full text |Cite
|
Sign up to set email alerts
|

Solar Radiation Interpolation

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
6
0
1

Year Published

2022
2022
2022
2022

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(7 citation statements)
references
References 25 publications
0
6
0
1
Order By: Relevance
“…El relieve, las superficies afectadas por sombras, las condiciones atmosféricas y las diferencias estacionales son algunos de los principales factores. Para el cálculo de la radiación solar hemos empleado el procedimiento incluido en el modelo gSolarRoof que emplea la herramienta 'Radiación solar de áreas' integrada en el software ArcGIS, que permite representar la radiación en un periodo de tiempo definido para un área geográfica (Martín y Domínguez, 2019). El análisis realizado da como resultado la radiación solar global en cada ubicación de una superficie determinada.…”
Section: Estimación De La Radiación Solarunclassified
“…El relieve, las superficies afectadas por sombras, las condiciones atmosféricas y las diferencias estacionales son algunos de los principales factores. Para el cálculo de la radiación solar hemos empleado el procedimiento incluido en el modelo gSolarRoof que emplea la herramienta 'Radiación solar de áreas' integrada en el software ArcGIS, que permite representar la radiación en un periodo de tiempo definido para un área geográfica (Martín y Domínguez, 2019). El análisis realizado da como resultado la radiación solar global en cada ubicación de una superficie determinada.…”
Section: Estimación De La Radiación Solarunclassified
“…In the first category, the methods partially model the spatial autocorrelation through mathematical functions; some of these methods are Natural Neighbor (NaN), Inverse Distance Weight (IDW), Triangular Irregular Network (TIN), Regression models, among others. In the second category, the methods simulate the spatial data autocorrelation and evaluate the uncertainty of the results to carry out the interpolation processes such as Kriging that which is the most commonly used method (Bhattacharjee et al, 2019;Martín & Dominguez, 2019;Sankar et al, 2018).…”
Section: Theoretical Frameworkmentioning
confidence: 99%
“…Li & Heap, 2008). This expression shows that the farthest sampled point has the lowest contribution to the calculation (Martín & Dominguez, 2019).The main factor influencing the method accuracy is the exponent selected arbitrarily as the neighborhood size. When the p parameter value increases, the weight value diminishes.…”
Section: Inverse Distance Weighted (Idw)mentioning
confidence: 99%
See 1 more Smart Citation
“…Geographic Information Systems (GIS) offer different options to analyze and represent the spatial heterogeneity of the incident solar radiation in a given area. Martín and Dominguez [ 24 ] presented a description of the methods for estimating the distribution of solar radiation in geographical areas, from a sample of data, using deterministic techniques (global polynomial interpolation, local polynomial interpolation, inverse distance weighting and radial basis functions) and geostatistical techniques (kriging and co-kriging) applying them for the summer solstice 2011, from 45 stations in Spain. Indeed, the global polynomial method presents interpolations closer to the real value, the geostatistical methods, in turn, generally present very low squared errors (the universal kriging and the ordinary co-kriging are those that show the best adequacy in the results).…”
Section: Introductionmentioning
confidence: 99%