“…When a protocol to solar heat for process industrial integration (SHIP integration) is being designed, there are some parameters that determine the solar heat integration potential: a) inherent to the process: energy demand [5], hourly heat demand profile, seasonal heat demand profile [6], temperature intervals, continuous, semicontinuous or batch processes, different kinds of solar heat (steam, drying, hot water) [7]; b) regarding to the facilities: location [5], surface area availability; c) depending on the expected objectives: solar fraction, outlet temperatures, payback time, lower emissions of greenhouse gases (GHG), saving costs [8]. However, the picture is not complete if the limitations or restrictions that represent serious challenges to overcome to achieve efficient use of solar energy are not given equal importance: a) inherent to the process: higher process heat demand than solar heat produced; b) regarding to the facilities: limited flexibility of the systems, use of outdated or non-optimal technology for process conditions, higher costs of solar heating systems than fossil fuel conventional systems [6]. And all these considerations must in turn take into account energy policy and the associated investment, which can also limit or restrict the optimal use of solar energy: lack of economic support to research and innovation to tuning and updating of technology, lack of standard procedures for the implementation and evaluation of technological systems, difficulty promoting attractive investment and business models for the deployment and integration of renewable energies, and few market incentives [9], prohibitions to produce and distribute renewable heat [10], among other.…”