2023
DOI: 10.21203/rs.3.rs-3581697/v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Solar Wind Speed Estimate with Machine Learning Ensemble Models for LISA

Federico Sabbatini,
Catia Grimani

Abstract: In this work we study the potentialities of machine learning models in reconstructing the solar wind speed observations gathered in the first Lagrangian point by the ACE satellite in 2016--2017 using as input data galactic cosmic-ray flux variations measured with particle detectors hosted on board the LISA Pathfinder mission also orbiting around L1 during the same years. We show that ensemble models composed of heterogeneous weak regressors are able to outperform weak regressors in terms of predictive accuracy… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 21 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?