Condensation, melting and freezing of nitrogen in a powder of mesoporous silica grains (SBA-15) has been studied by combined volumetric sorption isotherm and scanning calorimetry measurements. Within the mean field model of Saam and Cole for vapor condensation in cylindrical pores a liquid nitrogen sorption isotherm is well described by a bimodal pore radius distribution. It encompasses a narrow peak centered at 3.3 nm, typical of tubular mesopores, and a significantly broader peak characteristic of micropores, located at 1 nm. The material condensed in the micropores as well as the first two adsorbed monolayers in the mesopores do not exhibit any caloric anomaly. The solidification and melting transformation affects only the pore condensate beyond approx. the second monolayer of the mesopores. Here, interfacial melting leads to a single peak in the specific heat measurements. Homogeneous and heterogeneous freezing along with a delayering transition for partial fillings of the mesopores result in a caloric freezing anomaly similarly complex and dependent on the thermal history as has been observed for argon in SBA-15. The axial propagation of the crystallization in pore space is more effective in the case of nitrogen than previously observed for argon, which we attribute to differences in the crystalline textures of the pore solids.