Lanthanide nickelate Ln2NiO4+δ (Ln = La, Pr, or Nd) based mixed ionic and electronic conducting (MIEC) materials have drawn significant attention as an alternative oxygen electrode for solid oxide cells (SOCs). These nickelates show very high oxygen diffusion coefficient (D*) and surface exchange coefficient (k*) values and hence exhibit good electrocatalytic activity. Earlier reported results show that the partial substitution of Co2+ at B-site in La2Ni1−xCoxO4+δ (LNCO) leads to an enhancement in the transport and electrochemical properties of the material. Herein, we perform the substitution at A-site with Sr, i.e., La2−xSrxNi0.8Co0.2O4+δ, in order to further investigate the structural, physicochemical, and electrochemical properties. The structural characterization of the synthesized powders reveals a decrease in the lattice parameters as well as lattice volume with increasing Sr content. Furthermore, a decrease in the oxygen over stoichiometry is also observed with Sr substitution. The electrochemical measurements are performed with the symmetrical half-cells using impedance spectroscopy in the 700–900 °C temperature range. The total polarization resistance of the cell is increased with Sr substitution. The electrode reaction mechanism is also studied by recording the impedance spectra under different oxygen partial pressures. Finally, the kinetic parameters are investigated by analyzing the impedance spectra under polarization. A decrease in exchange current density (i0) is observed with increasing Sr content.