CubeSats have been extensively used in the past decade as scientific tools, technology demonstrators and for education. Recently, PocketQubes have emerged as an interesting and even smaller alternative to CubeSats. However, both satellite types often lack some key capabilities, such as micropropulsion, in order to further extend the range of applications of these small satellites. This paper reviews the current development status of micropropulsion systems fabricated with MEMS (micro electro-mechanical systems) and silicon technology intended to be used in CubeSat or PocketQube missions and compares different technologies with respect to performance parameters such as thrust, specific impulse, and power as well as in terms of operational complexity. More than 30 different devices are analyzed and divided into 7 main categories according to the working principle. A specific outcome of the research is the identification of the current status of MEMS technologies for micropropulsion including key opportunities and challenges.