Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details. Abstract-This paper describes the development of a solid-state fault current limiting and interrupting device (FCLID) suitable for low-voltage distribution networks. The main components of the FCLID are a bidirectional semiconductor switch that can disrupt the short-circuit current, and a voltage clamping element that helps to control the current and absorb the inductive energy stored in the network during current interruption. Using a hysteresis-type control algorithm, the short-circuit current can be constrained according to a predefined profile. Insulated-gate bipolar transistors and diodes are used to construct the semiconductor switch. Varistors are used as the voltage clamping element. An effective method is adopted to improve the current sharing between parallel varistors in order to provide the required capability of energy absorption. An overall protection scheme for the FCLID is described. A prototype FCLID for 230-V single-phase, or 400-V three-phase, applications is developed and tested. Analyses and experiments are carried out to define the stresses that the main components in the FCLID are subject to. The results show that the developed prototype is capable of limiting a 3-kA prospective short-circuit current to 120 A for a period of 0.8 s, without exceeding the thermal limits of the chosen switches and varistors.