Nanofiber membranes, produced through electrospinning, offer significant promise in the biomedical field due to their large surface area and strong mechanical properties. Their versatility is evident across applications such as drug delivery, wound healing, filtration, catalysis, and heritage conservation. However, the potential of electrospun membranes for advanced biomedical uses, like medical ultrasonic couplants, remains largely untapped. Current ultrasonic couplants have notable limitations, often failing to meet clinical needs and affecting patient comfort during diagnostics. To address this, gelatin/polyvinyl alcohol nanofiber membranes with various fibrous structures are developed and characterized, specifically designed for B‐mode ultrasonography. Through multi‐fluid electrospinning, three distinct nanofiber structures with average diameters of 325 ± 6.172, 349 ± 9.189, and 361 ± 2.117 nm are created. Electron microscopy confirmed these membranes' uniformity and smooth, hydrophilic surfaces. After crosslinking, the membranes exhibited enhanced mechanical strength and biodegradability. In ultrasound imaging trials, these nanofibers demonstrated superior clarity compared to commonly used polymer materials, revealing detailed body part structures. This study highlights the critical role of diverse nanofiber membranes in ultrasound imaging and positions them as promising alternatives to conventional couplants, with the potential to revolutionize ultrasound diagnostics and therapeutic practices.