This paper offers a perspective on "soft nanotechnology"; that is, the branch of nanotechnology concerned with the synthesis and properties of organic and organometallic nanostructures, and with nanofabrication using techniques in which soft components play key roles. It begins with a brief history of soft nanotechnology. This history has followed a path involving a gradual shift from the promise of revolutionary electronics, nanorobotics, and other futuristic concepts, to the realization of evolutionary improvements in the technology for current challenges in information technology, medicine, and sustainability. Soft nanoscience is an area that is occupied principally by chemists, and is in many ways indistinguishable from "nanochemistry". The paper identifies the natural tendency of its practitioners--exemplified by the speakers at this Faraday Discussion--to focus on synthesis and structure, rather than on function and application, of nanostructures. Soft nanotechnology has the potential to apply to a wide variety of large-scale applied (information technology, healthcare cost reduction, sustainability, energy) and fundamental (molecular biochemistry, cell biology, charge transport in organic matter) problems.