2018
DOI: 10.1080/01495739.2018.1490634
|View full text |Cite
|
Sign up to set email alerts
|

Solid-to-super-critical phase change and resulting stress wave during internal laser ablation

Abstract: The mechanisms of phase change of argon during picosecond laser internal ablation are studied using molecular dynamics simulations. It is found that propagation of stress wave and fluctuation of temperature are periodical. The phase change process from solid to liquid to supercritical fluid then back to solid occurs as combined results of heating and the propagation of tensile stress wave induced by the laser pulse and the limited internal space.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 47 publications
0
0
0
Order By: Relevance