A thin viscous layer is found over a substrate when it is immersed in a polymer solution. The layer thickness depends on the polymer and solvent type, their volume fraction, and the substrate. If the liquid solution contains particles, they are entrapped on the viscous polymer layer, acting as the binder. The trade-off between the viscous force and the centrifugal force on the particle determines the entrapment. Furthermore, the size of entrained particles are dictated by the binder concentration of the solution., A particle filtration technique is presented using the entrapment phenomenon from a poly-disperse mixture. A dimensionless number called the entrapment factor is introduced to correlate the particle entrapment with various parameters. By changing the entrapment factor, three distinct entrapment regimes are achieved and explained from a poly-disperse mixture. The experimental result shows that entrapped particles become larger as the factor increases, which can be controlled with multiple parameters of the dipping process. The proposed technique can lead to a filtration process of the wide-range poly-disperse particle mixture over the capillary filtration processes.